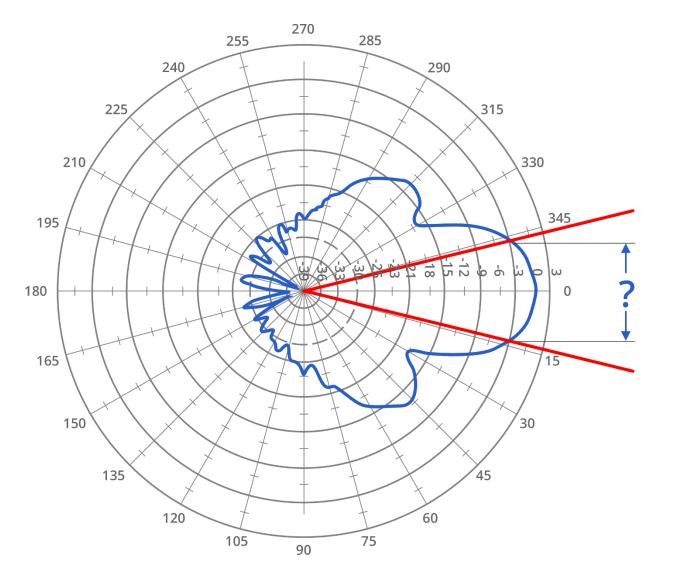


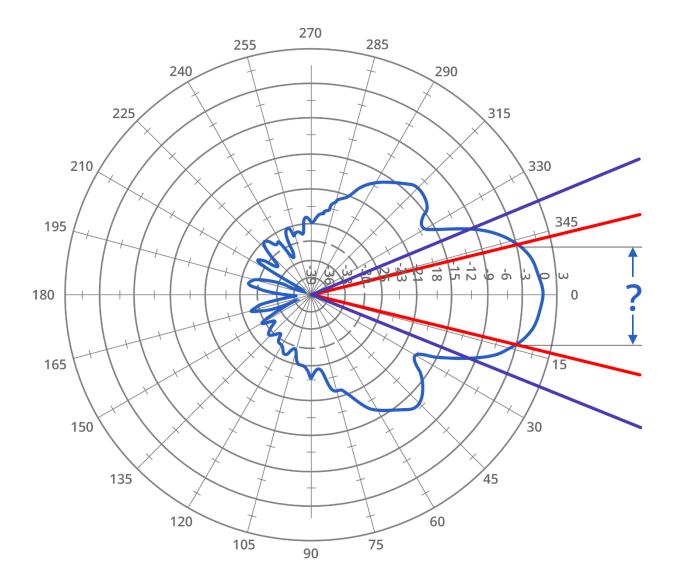
Radio network planning

What is antenna gain?

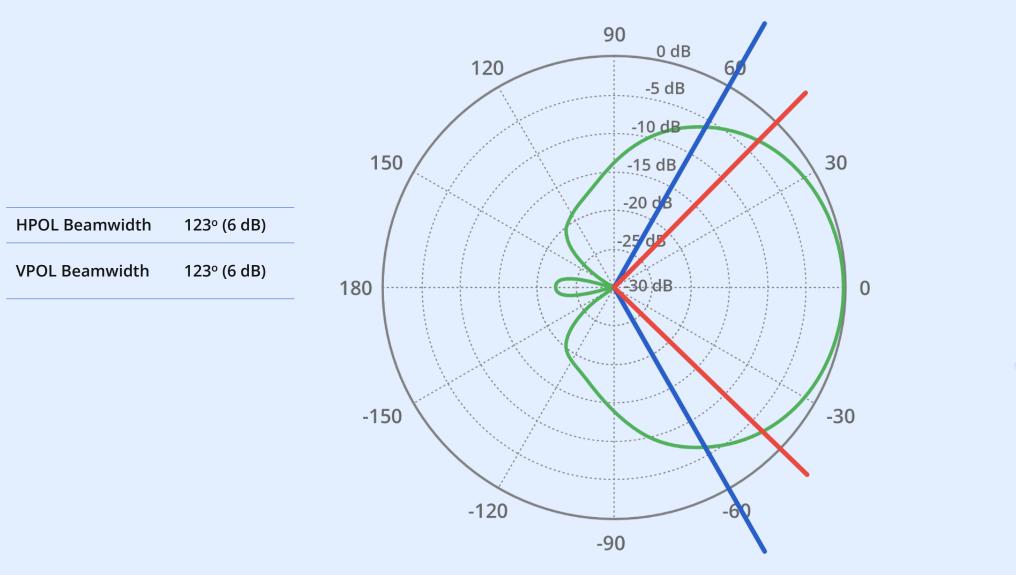

Antenna does not gain!

The ratio of the radiation intensity in a given direction to the radiation intensity that would be produced if the power accepted by the antenna were isotropically radiated

Marketing changes the antenna`s angle


Antenna angle usually means angle between to the right and left of the direction in which it is set, working at a gain by 3 dB less than that specified in the technical data

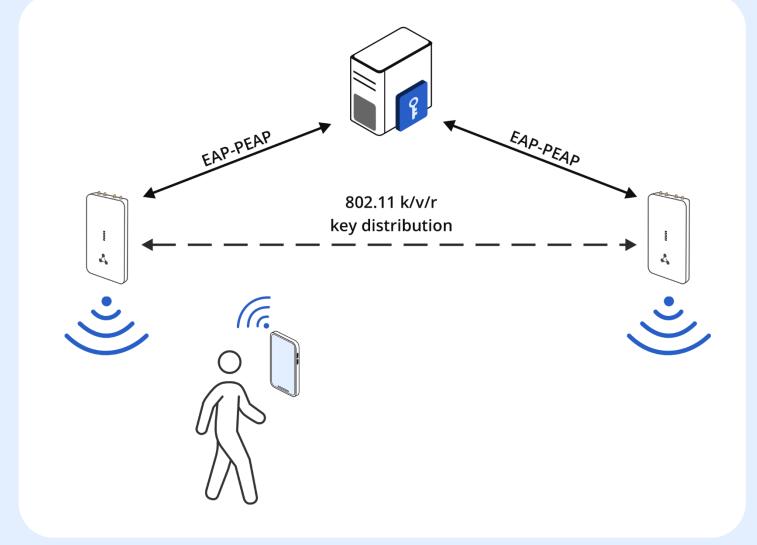
Marketing changes the antenna`s angle


Antenna angle ussially means angle beetween to the right and left of the direction in which it is set, working at a gain by 3 dB less than that specified in the technical data".

But what's happens, if we agree with gain less more then 3 dB? For example 6 or 9 dB?

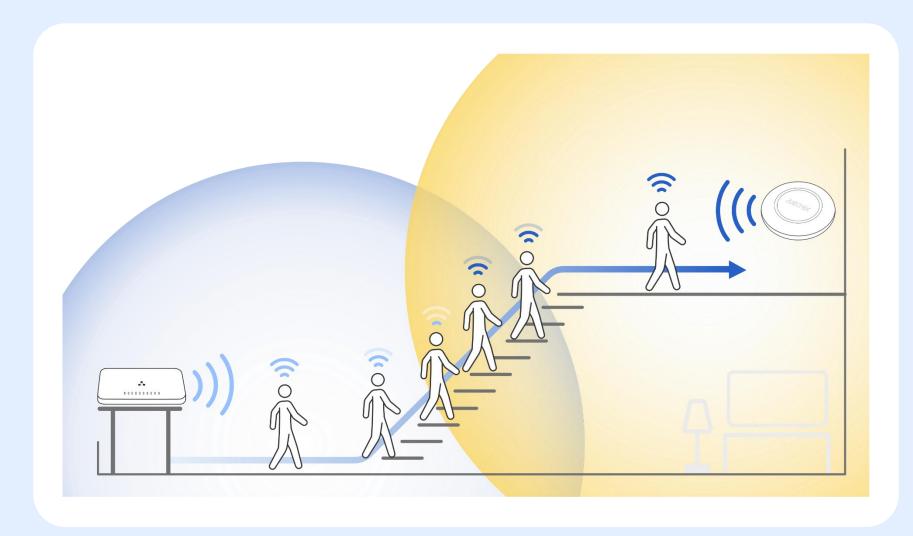
Marketing changes the antennas angle

Horizontal Azimuth



Enterprise Wi-Fi

~


In enterprise network SSID, which uses a radius-server (remote authentication dial-in user service) to authenticate a client, switching from one access point to another can take a lot of time, which is needed for exchanging auth information between access point and radius-server. It can take nearly 1 second!

802.11k/v/r standard is responsible for seamless roaming

Seamless Wi-Fi roaming

802.11 k / v / r

Basics of Radio Planning

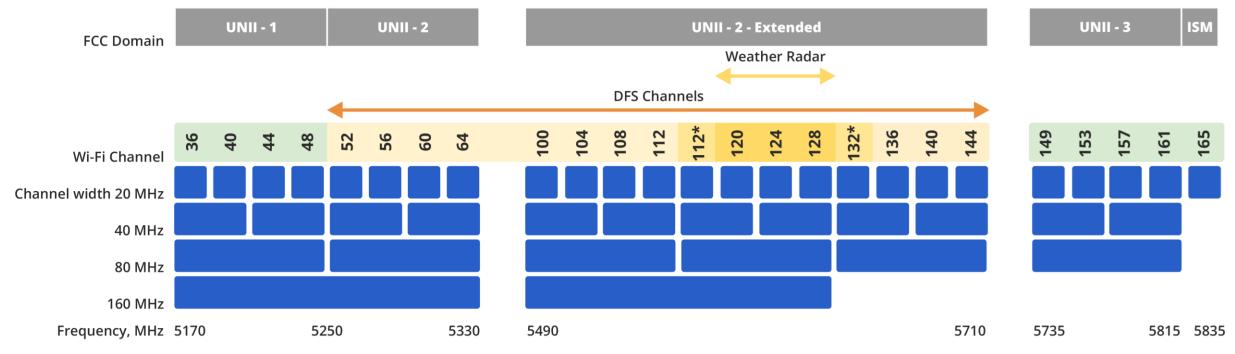
TamoGraph Site Survey https://www.tamos.com/products/wifi-site-survey

> Ekahau connect https://www.ekahau.com/products/ekahau-connect

Modulation and Coding Scheme Table

-	

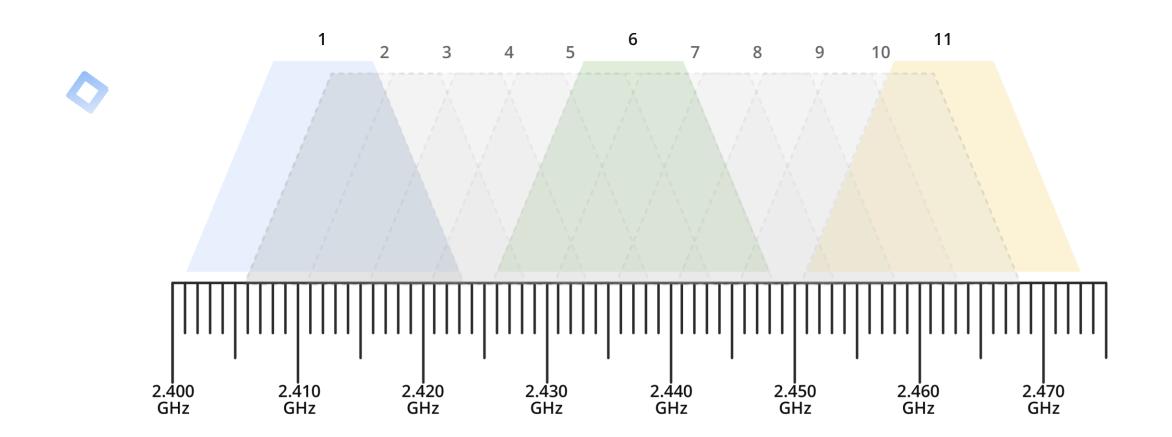
				20MHz				40MHz			80MHz			160MHz					
HT MSC	VHT MCS	Modulation	ation Coding	Data	rate		RSSI	Data	rate		RSSI	Data rate		Min. SNR	DCCI	Data rate		Min. SNR	RSSI
MSC	WCS			800ns	400ns	Min. SNR R	KSSI	800ns	400ns	Min. SNR		800ns	400ns		RSSI	800ns	400ns	WIIN. SINK	KSSI
1 Spatial stream																			
0	0	BPSK	1/2	6,5	7,2	2	-82	13,5	15	5	-79	29,3	32,5	8	-76	58,5	65	11	-73
1	1	QPSK	1/2	13	14,4	5	-79	27	30	8	-76	58,5	65	11	-73	117	130	14	-70
2	2	QPSK	3/4	19,5	21,7	9	-77	40,5	45	12	-74	87,8	97,5	15	-71	75,5	195	18	-68
3	3	16-QAM	1/2	26	28,9	11	-74	54	60	14	-71	117	130	17	-68	234	260	20	-65
4	4	16-QAM	3/4	39	43,3	15	-70	81	90	18	-67	175,5	195	21	-64	351	390	24	-61
5	5	64-QAM	2/3	52	57,8	18	-66	108	120	21	-63	234	260	24	-60	468	520	27	-57
6	6	64-QAM	3/4	58,5	65	20	-65	121,5	135	23	-62	263,3	292,5	26	-59	526,5	585	29	-56
7	7	64-QAM	5/6	65	72,2	25	-64	135	150	28	-61	292,5	325	31	-58	585	650	34	-55
	8	256-QAM	3/4	78	86,7	29	-59	162	180	32	-56	351	390	35	-53	702	780	38	-50
	9	256-QAM	5/6			31	-57	180	200	34	-54	390	433,3	37	-51	780	866,7	40	-48
									2 Spatia	al stream									
8	0	BPSK	1/2	13	14,4	2	-82	27	30	5	-79	58,6	65	8	-76	117	130	11	-73
9	1	QPSK	1/2	26	28,8	5	-79	54	60	8	-76	117	130	11	-73	234	260	14	-70
10	2	QPSK	3/4	39	43,4	9	-77	81	90	12	-74	175,6	195	15	-71	151	390	18	-68
11	3	16-QAM	1/2	52	57,8	11	-74	108	120	14	-71	234	260	17	-68	468	520	20	-65
12	4	16-QAM	3/4	78	86,6	15	-70	162	180	18	-67	351	390	21	-64	702	780	24	-61
13	5	64-QAM	2/3	104	115,6	18	-66	216	240	21	-63	468	520	24	-60	936	1040	27	-57
14	6	64-QAM	3/4	117	130	20	-65	243	270	23	-62	526,6	585	26	-59	1053	1170	29	-56
15	7	64-QAM	5/6	130	144,4	25	-64	270	300	28	-61	585	650	31	-58	1170	1300	34	-55
	8	256-QAM	3/4	156	173,4	29	-59	324	360	32	-56	702	780	35	-53	1404	1560	38	-50
	9	256-QAM	5/6			31	-57	360	400	34	-54	780	866,6	37	-51	1560	1733,4	40	-48
									3 Spatia	al stream									
16	0	BPSK	1/2	19,5	21,6	2	-82	40,5	45	5	-79	87,9	97,5	8	-76	175,5	195	11	-73
17	1	QPSK	1/2	39	43,2	5	-79	81	90	8	-76	175,5	195	11	-73	351	390	14	-70
18	2	QPSK	3/4	58,5	65,1	9	-77	121,5	135	12	-74	263,4	292,5	15	-71	226,5	585	18	-68
19	3	16-QAM	1/2	78	86,7	11	-74	162	180	14	-71	351	390	17	-68	702	780	20	-65
20	4	16-QAM	3/4	117	129,9	15	-70	243	270	18	-67	526,5	585	21	-64	1053	1170	24	-61
21	5	64-QAM	2/3	156	173,4	18	-66	324	360	21	-63	702	780	24	-60	1404	1560	27	-57
22	6	64-QAM	3/4	175,5	195	20	-65	364,5	405	23	-62			26	-59	1579,5	1755	29	-56
23	7	64-QAM	5/6	195	216,6	25	-64	405	450	28	-61	877,5	975	31	-58	1755	1950	34	-55
	8	256-QAM	3/4	234	260,1	29	-59	486	540	32	-56	1053	1170	35	-53	2106	2340	38	-50
	9	256-QAM	5/6			31	-57	540	600	34	-54	1170	1299,9	37	-51			40	-48


Basic recommendations

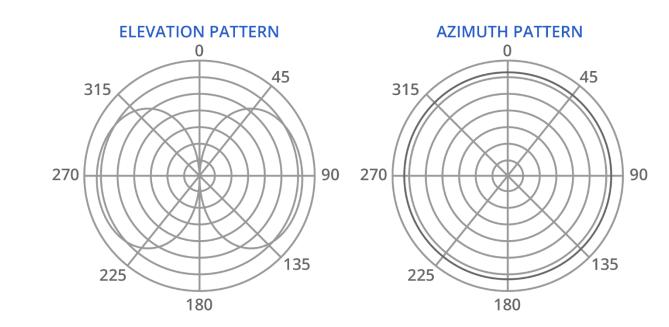
Access point should be placed on the level below the lowest hanging systems There are must not any metal constructions or concrete objects around a meter close to access point At any point of room we have to have line of sight at least to once access point

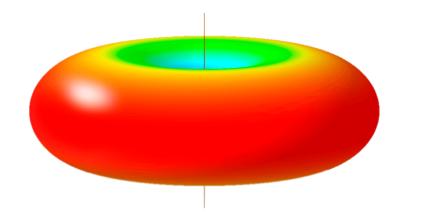
802.11ac channel allocation (5 GHz band)

* Channels 116 and 132 are Doopler radar channels that may be used in some cases

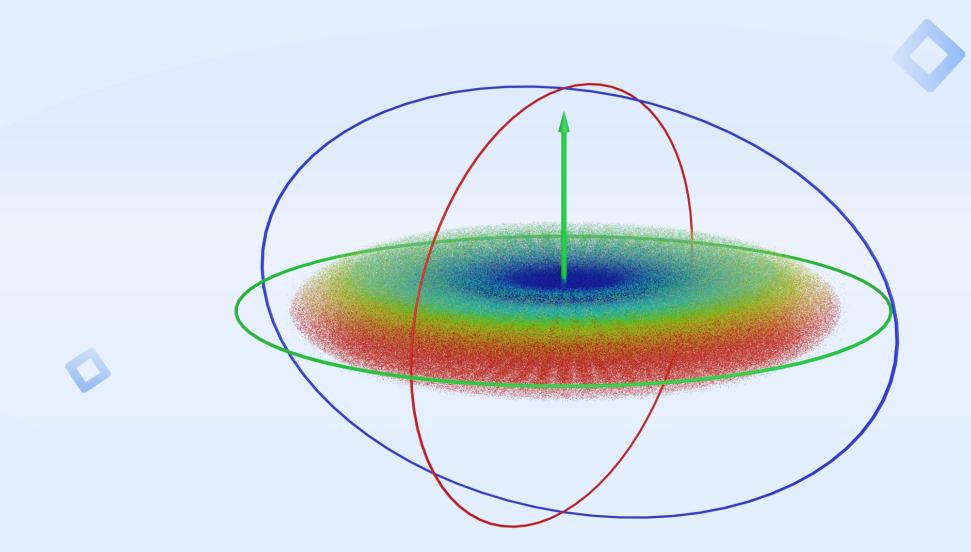

5 GHz (802.11a/h/n/ac/ax) channel restriction

Ch., 20Mhz	Freq., MHz	UNNI band	Russia				
32	5160)))					
36	5180						
40	5200		Indoors/TPC				
44	5220						
48	5240						
52	5260		indoors/iPC				
56	5280						
60	5300	UNII-2A					
64	5320						
68	5340						
72	5360						
76	5380						
80	5400	UNII-2B	Unused				
84	5420		unusea				
88	5440						
92	5460						
96	5480						
100	5500						
104	5520						
108	5540						
112	5560		No				
116	5580	UNII-2C					
120	5600	UNII-2C					
124	5620						
128	5640						
132	5660						
136	5680						
140	5700						
144	5720	UNII-2C/3					
	5730-5735						
149	5745		Indoors/TPC				
153	5765						
157	5785	UNII-3					
161	5805						
165	5825						
169	5845	UNII-3/4					
173	5865						
177	5885	UNII-4	No				


Yes	May be used without restrictions
No	Forbidden to use
Indors	MUST be used indoor only
DFS	MUST be used with DFS regardless indoor or outdoor
SDR	MUST comply with SRD requirements regardless indoor or outdoor
Indoors/DFS	MUST be used with DFS and indoor only
Indoors/TPC	MUST be used with TPC and indoor only
DFS/TPC	MUST be used with DFS and TPC
DFS/TPC + SRD	MUST be used with DFS, TPC and comply with SRD requirements
Indoors/DFS/TPC	MUST be used with DFS, TPC and indoor only

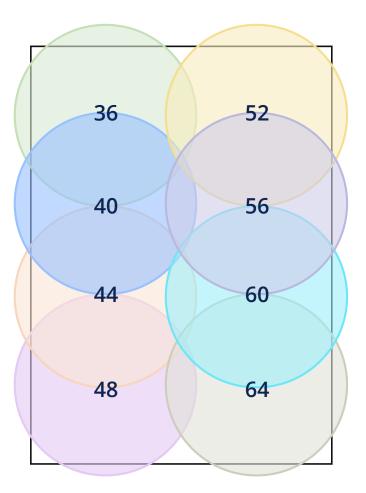

- DFS: dynamic frequency selection (It was standardized in 2003 as part of IEEE 802.11h)
- SRD: short-range device (typically limited to 25–100 mW, described by ECC Recommendation 70-03)
- TPC: transmit power control (this feature include in IEEE 802.11h)

802.11 b/g/n channel allocation (2.4 GHz band)



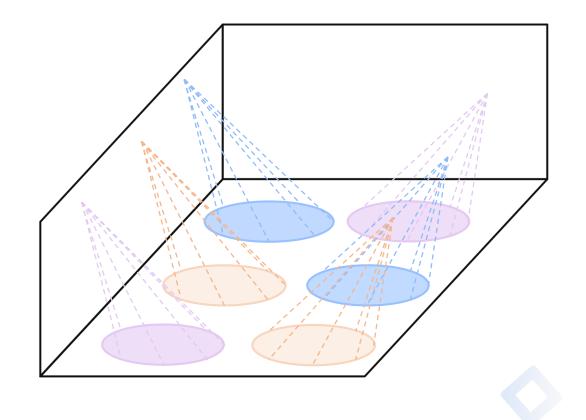
Beam Pattern Indoor Access Point

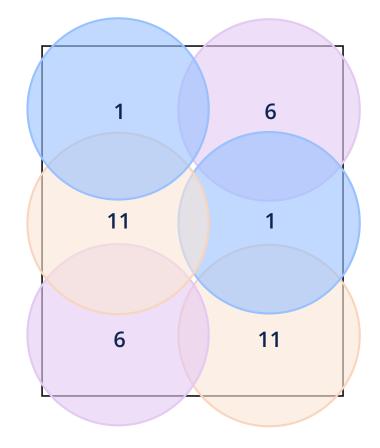
8dB Omni radiation pattern example


5 GHz channel allocation indoor example

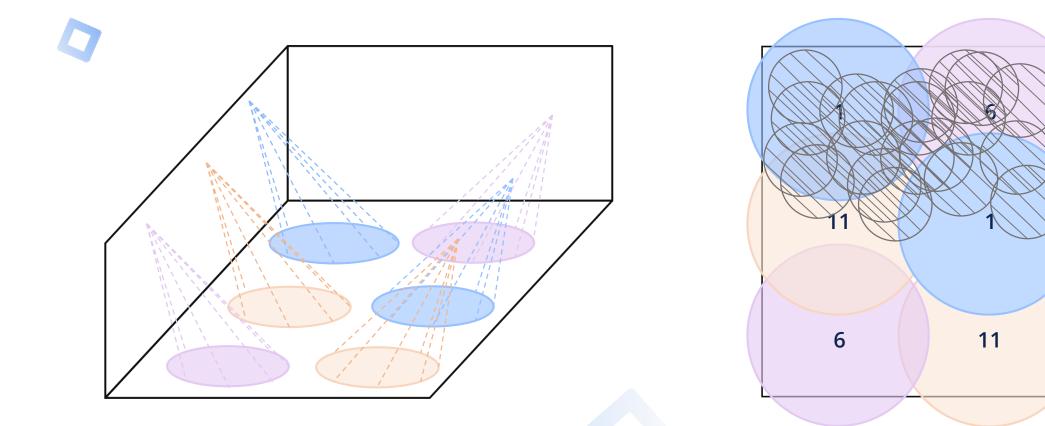
0

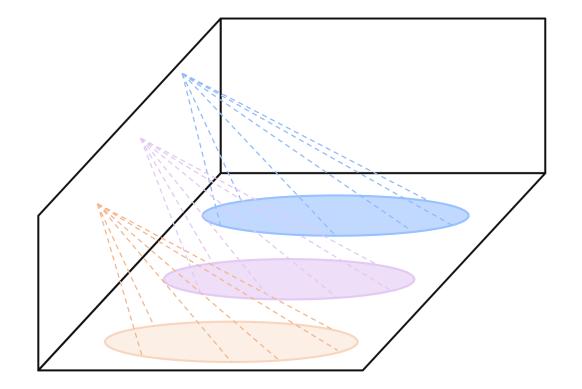
In 5GHz band we can use 8 separated channels and easily distribute its to cover the room. As toy can see, cover zone of any AP overlapped this others. In 5GHz we have no problems with it.

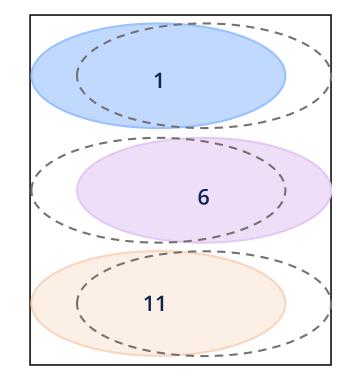

Hoy most important thing in 5GHz Wi-Fi channel allocation is the ability to spread identical channels to long distance between its.


The diagram shows some an "ideal" room, but usually there are some constructions and engineering structures. Should not forget about it.

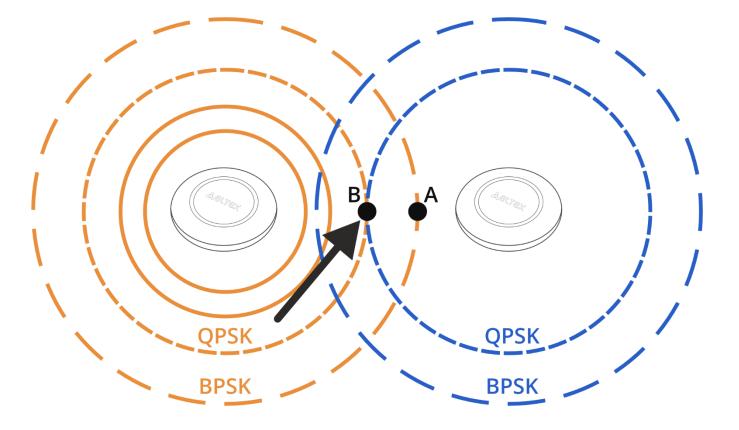
2.4 GHz channel allocation: how we see the perfect picture


Wrong!


2.4 GHz channel allocation: real life


Wrong!

2.4 GHz channel allocation: how to make its better



Disable 2.4 GHz on half of the access points

Disabling slow modulations, like BPSK and QPSK

We have to place APs with taking in account that lower modulation would be turned off! The decision to disable lower modulation must not appear after we have placed APs!

Attenuator Man

Man himself is a kind of source of attenuation

Optimization for highload

Using access points with directional antennas

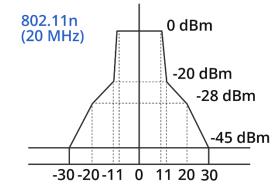
Shutdown lower modulations (BPSK, QPSK)

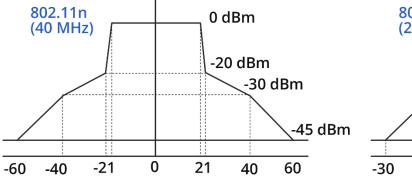
Shutdown part of Wi-Fi SSIDs at 2.4 GHz

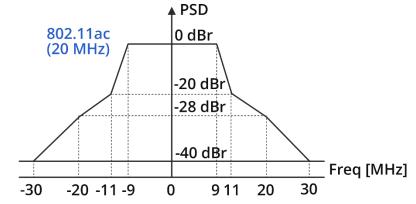
Clients are source of interference

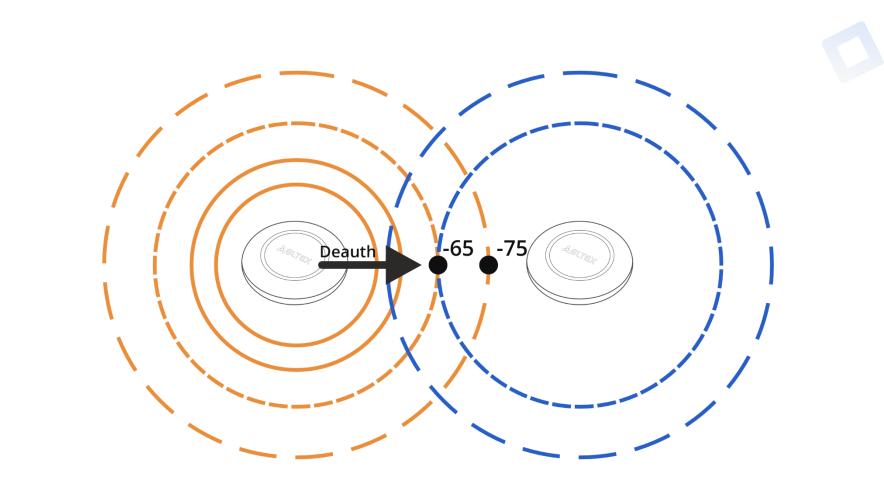
Close layout of access points

Close layout of access points






Spectral mask



Using high minimal signal level

~

Received Signal Strength Indicator (RSSI)

Signal strength, dBm	Quality	Description	Enough for
-30	Amazing	Max achievable signal strength. The client can only be a few feet from the AP to achieve this. Not typical or desirable in the real world.	Everything
-67	Very good	Minimum signal strength for applications that require very reliable, timely delivery of data packets.	VoIP, streaming video
-70	Okay	Minimum signal strength for reliable packet delivery.	Email, web
-80	Not good	Minimum signal strength for basic connectivity. Packet delivery may be unreliable.	N/A
-90	Unusable	Approaching or drowning in the noise floor. Any functionality is highly unlikely.	N/A

Large number of SSID at AP

Variables:		Assumption	s:										
Beacon data rate (Mbps)		802.11g 5Mbps		802.11b long preambule used for 1Mbps; short preambule used for 2, 5.5, 11Mbps									
Beacon frame size (bytes)		300		801.11g short slot time is assumed, with no 802.11b clients within range									
Beacon interval (ms)		102,4		WMM is enables and beacons are transmitted using "Best effor AC"									
beacon intervar (ins)		102,4		WINN IS EIIADI	es anu beacons		are transmitted using "Best effor AC"						
Amount of overhead		0-10% Low		10-20% Mediu	m	20-50% High		>50% Very higi	n				
		•			Number o	f SSIDs		•					
Number of APs on channel	1	2	3	4	5	6	7	8	9	10			
1	0,45%	0,90%	1,35%	1,80%	2,25%	2,70%	3,15%	3,60%	4,05%	4,50%			
2	0,90%	1,80%	2,70%	3,60%	4,50%	5,40%	6,30%	7,20%	8,10%	9,00%			
3	1,35%	2,70%	4,05%	5,40%	6,75%	8,10%	9,45%	10,80%	12,16%	13,51%			
4	1,80%	3,60%	5,40%	7,20%	9,00%	10,80%	12,60%	14,40%	16,21%	18,01%			
5	2,25%	4,50%	6,75%	9,00%	11,25%	13,50%	15,75%	18,00%	20,27%	22,52%			
6	2,70%	5,40%	8,10%	10,80%	13,50%	16,20%	18,90%	21,60%	24,32%	27,02%			
7	3,15%	6,30%	9,45%	12,60%	15,75%	18,90%	22,05%	25,20%	28,38%	31,52%			
8	3,60%	7,20%	10,80%	14,40%	18,00%	21,60%	25,20%	28,80%	32,43%	36,03%			
9	4,05%	8,10%	12,15%	16,20%	20,25%	24,30%	28,35%	32,40%	36,49%	40,53%			
10	4,50%	9,00%	13,50%	18,00%	22,50%	27,00%	31,50%	36,00%	40,54%	45,04%			
11	4,95%	9,90%	14,85%	19,80%	24,75%	29,70%	34,65%	39,60%	44,60%	49,54%			
12	5,40%	10,80%	16,20%	21,60%	27,00%	32,40%	37,80%	43,20%	48,65%	54,04%			
13	5,85%	11,70%	17,55%	23,40%	29,25%	35,10%	40,95%	46,80%	52,71%	58,55%			
14	6,30%	12,60%	18,90%	25,20%	31,50%	37,80%	44,10%	50,40%	56,76%	63,05%			
15	6,75%	13,50%	20,25%	27,00%	33,75%	40,50%	47,25%	54,00%	60,82%	67,56%			
16	7,20%	14,40%	21,60%	28,80%	36,00%	43,20%	50,40%	57,60%	64,87%	72,06%			
17	7,65%	15,30%	22,95%	30,60%	38,25%	45,90%	53,55%	61,20%	68,93%	76,56%			
18	8,10%	16,20%	24,30%	32,40%	40,50%	48,60%	56,70%	64,80%	72,98%	81,07%			
19	8,55%	17,10%	25,65%	34,20%	42,75%	51,30%	59,85%	68,40%	77,04%	85,57%			
20	9,00%	18,00%	27,00%	36,00%	45,00%	54,00%	63,00%	72,00%	81,09%	90,08%			
21	9,45%	18,90%	28,35%	37,80%	47,25%	56,70%	66,15%	75,60%	85,15%	94,58%			
22	9,90%	19,80%	29,70%	39,60%	49,50%	59,40%	69,30%	79,20%	89,20%	99,08%			
23	10,35%	20,70%	31,05%	41,40%	51,75%	62,10%	72,45%	82,80%	93,26%	100,00%			
24	10,80%	21,60%	32,40%	43,20%	54,00%	64,80%	75,60%	86,40%	97,31%	100,00%			
25	11,25%	22,50%	33,75%	45,00%	56,25%	67,50%	78,75%	90,00%	100,00%	100,00%			
26	11,70%	23,40%	35,10%	46,80%	58,50%	70,20%	81,90%	93,60%	100,00%	100,00%			

Name	Organization	Phone	Email	Description

At the beginning of the project

Goals for radio surveyor

Survey and information collection

Take photos and make videos of rooms CONNECTED TO ROOM`S IDENTIFIER to make clear that room it is about Get information about walls width, materials and be aware of metal grids or any other constructions

Make clear the presence and position of mobile operator femtocells - it can bring jams to Wi-Fi Decide the parts of the room where it's possible APs placement. Agree APs locations with rooms owners, designers and etc.

Define height of ceilings and its construction

Goals for radio surveyor

Design of the project

Write on schemes places of every AP

- Appoint unique identifier of every AP
- For sector APs appoint directions for antennas

For every AP - write point of AP placement in room photo, linking its unique identifier

Appoint AP position:

- horizontal or vertical
- on ceiling, on wall, or on some other place

Appoint installation newances: construction of attachment fittings, containing separate antennas or not After installation of AP, technician must write AP MAC-address linked to it unique identifier

Goals for radio surveyor

Get all information about networks and services

Whether GRE tunneling is used or not?

Who issues the DHCP addresses? Is it separate DHCP-server or its do by switches and routers? Whether or not DHCPrelay is used? Specifying the existence of using VLANs. Specifying the existence of using IP subnets. Is there a management VLAN for the APs?

Whether the wired access VLANs are isolated from the SSIDs VLANs (especially multicast)? Allocate sufficient resources for the management system Provide for redundancy of critical parts:

- Routers, switches
- DHCP-servers
- Servers for Management System

SELTEX

Thank you for your attention!

We are always ready to discuss, develop and finalize solutions for your specification

29V, Okruzhnaya St., Novosibirsk, Russia, 630020 09:00 — 18:00 (GMT+7) Monday — Friday

+7 (383) 274-10-01, 274-48-48 eltex@eltex-co.ru; eltex-co.com

ELTEX Enterprise Ltd. | Russian developer and manufacturer of telecommunication equipment